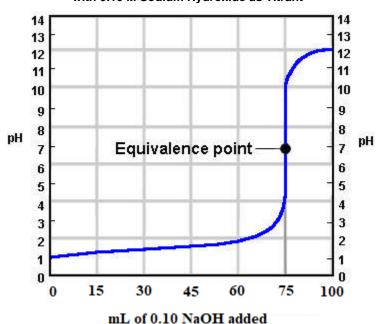
Dougherty Valley HS Chemistry Acids & Bases – More Titration Practice

_	
	Worksheet #13

Name) :						Period:	•	Seat#:	
Direct	ions:									
•		your work answers		ed at the end	of the probl	em. They a	are underlin	ed.		
1)	How n	nany mL o	of a 0.10 M	l Ca(OH) ₂ sol	lution are re	quired to ne	eutralize 25	.0 mL of 0.5	50 M HNO₃?	
2)				KOH solution cid solution?					sid solution (H ₂ S 2SO4 <u>0.2 M</u>	O ₄), what is
3)				08 M NaOH s t is the moled					known monoprot	ic acid in
4)	What	volume of	1.015 mol	/L magnesiu	m hydroxide	is needed	to neutraliz	re 40.0 mL (of 1.60 mol/L HC	CI? <u>31.5 mL</u>
5)									equired to neutra olution? <u>0.020 M</u>	ilize 50.0 mL
6)				HCI is needed M NaOH <u>22.</u>		e each soli	ution listed	below?		
	b.	20.0 ml	_ of 0.185 l	M NH₄OH <u>24</u> .	<u>.7 mL</u>					
	C.	80.0 ml	of 0.0045	M Ca(OH) ₂	<u>4.8 mL</u>					

7)	What concentration of sodium hydroxide is required for each neutralization reaction?						
	d.	37.82 mL of NaOH neutralizes 15.00 mL of 0.250 M HF <u>0.0991 M</u>					
	e.	21.56 mL of NaOH neutralizes 20.00 mL of 0.145 M H_2SO_4 . Assume we are only removing one H+ from H_2SO_4 <u>0.135 M</u>					
	f.	14.27 mL of NaOH neutralizes 25.00 mL of 0.105 M H_3PO_4 Assume we are only removing one H+ from H_3PO_4 0.184 M					
8)	Ammor	mL sample of sulfuric acid is completely neutralized by adding 32.8 mL of 0.116 M ammonia solution. nium sulphate is formed. What is the concentration of the sulfuric acid? 7.6 x 10 ² M - use the balanced equation. You are removing both H+ this time according to the equation!					
9)	with 0.2	acid, a chemical responsible for muscle fatigue, is a monoprotic acid. When 0.578 g of lactic acid is titrated 206 M NaOH, a volume of 31.11 mL of NaOH is used. What is the molar mass of lactic acid? laOH → NaA + H₂O					
10		me of 25.0 mL of nitric acid, HNO $_3$ is titrated with 0.12 M NaOH. To completely neutralize the acid 10 mL of must be added. Find the concentration (mol/L) of the nitric acid. HNO $_3$ + NaOH → NaNO $_3$ + H $_2$ O					
11	require	c acid is a diprotic acid used in the production of pharmaceuticals. A 0.965 g sample of malonic acid s 45.91 mL of 0.404 M LiOH to be neutralized. Determine the molar mass (g/mol) for malonic acid. 2 LiOH \rightarrow Li ₂ A + 2 H ₂ O					


12) To find the molarity of sulfuric acid, H₂SO₄ it is titrated with 0.75 M KOH. It requires 328.4 mL of KOH to neutralize a 40.00 mL sample of sulfuric acid. Calculate the concentration (mol/L) of the sulfuric acid. H₂SO₄ + 2 KOH → K₂SO₄ + 2 H₂O

13) Boric acid is a triprotic acid that is used as an ant and roach killer. A 1.42-g sample of boric acid is neutralized by 157 mL of 0.4388 M NaOH. Determine the molar mass (g/mol) for boric acid. H₃A + 3 NaOH → Na₃A + 3 H₂O

14) Tartaric acid, $H_2C_4H_4O_6$ is neutralized with NaOH. A sample of 3.0 g of tartaric acid reacts with 45 mL of base. How concentrated is the base? $H_2C_4H_4O_6 + 2$ NaOH \rightarrow Na₂C₄H₄O₆ + 2 H₂O

15) Using the following graph, determine the concentration of the unknown titrand.

Titration of 25 mL HCl of Unknown Concentration with 0.10 M Sodium Hydroxide as Titrant

